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Multi-targeted nanocarrier

Multi-targeted drug delivery vehicles encapsulating doxorubicin within a pH-sensitive matrix, 

embedded with gold nanoparticles, and decorated on the surface with Herceptin®-polyethylene 

glycol conjugates were synthesized for enhanced specific binding and tumoricidal efficacy in 

HER2 overexpressing SK-BR-3 cells. We demonstrated that multiple modes of targeting were 

complementary and have potential for use as a cancer therapy.
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Breast cancer is the second leading cause of cancer related deaths in women, surpassed only 

by lung cancer.[1] Current clinical therapies target estrogen receptor (ER) and human 

epidermal growth factor receptor-2 (HER2) to reduce cancer cell proliferation. These 

methods are often used in conjunction with surgery, chemotherapy, and/or radiation in 

efforts to eradicate the disease. However, 25% of patients face tumor recurrence and 

resistance within 5 years after treatment.[2] Ideally, the initial treatment would supply a 

robust, broad spectrum therapy to eliminate all cancer cells while minimizing damage to 

healthy tissue.

Tumor targeting strategies have the potential to improve the therapeutic efficacy of 

chemotherapeutic agents relative to systemic approaches. To date, targeted therapeutics are 

engineered using receptor-mediated or stimuli-responsive methods. Molecules that recognize 

and/or inhibit receptor function – alone, pegylated, or tethered to a cargo – improved 

targeting and reduced cancer cell proliferation and/or migration (e.g., folate,[3] anti-

CXCR4,[4] anti-HER2).[5] Stimuli-sensitive therapeutics tailored delivery to the tumor site 

via activation by a physiological change or an external source, minimizing off-target effects. 

We previously synthesized a pH-sensitive drug delivery vehicle that triggered the release of 

paclitaxel in acidic tumor environments.[6] Thermal ablation of tumors, resulting from 

localized heating of near infrared (NIR) light activated carbon nanotubes[7] or gold 

particles,[8] were effective in the treatment of skin,[9] breast,[10] liver,[11] and ovarian 

cancers.[12] Individually, each targeted therapy provided a substantial advantage over 

nontargeted methods.

Integrating two targeting methods in one vehicle has improved tumoricidal efficacy relative 

to each approach used independently. A drawback of merging two targeting approaches is 

additional synthesis and purification steps that often result in low encapsulation of drug. 

Doxorubicin (Dox) encapsulation can reduce the overall efficacy of the chemotherapeutic 

relative to systemic administration.[13] Dox, an effective and widely used chemotherapeutic 

agent due to its hydrophilicity and high toxicity, suffers from low drug loading and fast 

release rates when encapsulated within polymeric nanoparticles. In addition, the 

simultaneous or step-wise delivery of heat and drug may drastically affect the therapeutic 

result.[14] A tunable drug delivery strategy engineered to provide the greatest therapeutic 

impact would be desirable.

In this report, we synthesized a single drug carrier that targets HER2, triggers Dox release, 

and thermally ablates breast cancer cells. The particles encapsulate Dox within a pH-

sensitive matrix that is embedded with Au nanoparticles and decorated with polyethylene 

glycol (PEG)-HER2 conjugates within five steps (Figure 1). Dithiolated dimethylaminoethyl 

methacrylate (dT-DMAEMA), the pH-responsive monomer, was synthesized by reversible 

addition-fragmentation chain-transfer (RAFT) polymerization and characterized by nuclear 

magnetic resonance (NMR) (Figure S1, supporting information). Particles encapsulating 

Dox were prepared via an oil in water emulsification. Tuning the ratio of dT-DMAEMA/

HEMA and buffer pH regulated the swelling properties of the matrix. We have previously 

shown that DMAEMA/HEMA matrices are sensitive to incremental changes in pH (>0.2 pH 

units).[6, 15] The pH-responsive matrix effectively acts as a logic gate, entrapping Dox within 

the matrix until the network is opened.
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Subsequently, gold (Au) nanoparticles are homogeneously formed throughout the pH-

responsive matrix. Thiol groups in dT-DMAEMA have affinity for itself and both colloidal 

Au and Au ions. dT-DMAEMA/HEMA nanoparticles were immersed in an aqueous 

potassium tetrachloroaurate (KAuCl4) solution and followed by reduction in a sodium 

borohydride (NaBH4) solution.[16] As shown in Figure 2a, Au nanoparticles were 

homogeneously distributed within Dox encapsulating dT-DMAEMA/HEMA nanoparticles 

(30/70, mol/mol). This was also observed visually; white particles became brown after Au 

synthesis (Figure 2a–i and 2a–ii).

Particles were functionalized on the exterior with a difunctional polyethylene glycol (SH-

PEG-COOH, 10 μmol/10 mg particles), having both thiol and carboxylic acid groups at each 

end. Introduction of a thiol group allowed the noncovalent attachment of PEG to Au and dT-

DMAEMA. Thiol-functionalized PEGs are useful for triggering the release of PEG within 

the glutathione rich cytoplasmic environment.[17] After separating unanchored PEG from 

free PEG in solution by dialysis, Herceptin® was conjugated via a carbodiimide reaction (9 

nmol/10 mg particles). Herceptin® has been shown clinically to target and reduce 

proliferation in HER2+ breast tumors.[18] Herceptin®-PEG labeled, Gold embedded, Dox 

encapsulating, pH-responsive (30 dT-DMAEMA/70 HEMA, mol/mol) (HPG-Dox-30D70H) 

nanoparticles were designed to target HER2+ breast cancer cells, trigger the release of Dox, 

and induce hyperthermia upon activation with near infrared (NIR) laser irradiation.

The size and morphology of all nanoparticles were examined by transmission electron 

microscopy (TEM) (Figure 2a) and dynamic light scattering (Table S1, supporting 

information). Examination of the nanoparticles revealed a uniform and smooth surface 

morphology as shown in Figure S2a (supporting information). The average diameter of 

HPG-Dox-30D70H nanoparticles was 186.4 ± 18.6 nm (Figure S2b, supporting information) 

with a negative surface charge of −7.3 ± 2.1 mV. The size and charge of HPG-Dox-30D70H 

are suitable for systemic delivery; these nanocarrier traits have resulted in the enhanced 

permeability and retention (EPR).[19] The negative charge of HPG-Dox-30D70H is caused 

by unreacted PEG-COOH. The amine groups in DMAEMA become protonated as the pH 

decreases. As the dT-DMAEMA content increased from 10 to 30%, the zeta potential rose 

from −18.9 to −7.3 mV in parallel. Nanoparticle aggregation in serum free medium was not 

observed during cell viability and targeting experiments.

The Au content of HPG-Dox-10D90H (10 dT-DMAEMA/90 HEMA, mol/mol) and HPG-

Dox-30D70H was characterized by thermogravimetric analysis (TGA), via heating from 20 

to 600°C under continuous argon flow (Figure 2b). TGA analysis of Au embedded, pH-

sensitive nanoparticles revealed the content of Au nanoparticles was 1.45 ± 0.10% and 2.71 

± 0.22% (w/w) for HPG-Dox-10D90H and HPG-Dox-30D70H, respectively. Au density 

increased with dT-DMAEMA content. Our previous report demonstrated that under similar 

reaction conditions the in situ synthesis of Au colloids was dictated by initial thiol 

content.[16b] The encapsulation of Dox had no effect on the ability to synthesize Au colloids 

within dT-DMAEMA/HEMA matrices. The UV-vis spectrum of HPG-Dox-30D70H 

nanoparticles indicated absorbance in the near infrared range with a peak occurring at 795 

nm (Figure 2c).
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To demonstrate the potential of HPG-Dox-30D70H for photothermal cancer therapy, HPG-

Dox-30D70H nanoparticles were exposed under NIR laser irradiation at 810 nm with 5 

W/cm2 for 10 min. Changes in temperature were measured and imaged by a thermal camera 

over the duration of the experiment (Figure 2d–i, 2d–ii). Representative thermal images 

taken at different time points of NIR exposure for HPG-Dox-30D70H nanoparticles (5 

mg/mL) show the temperature distribution within each well (Figure S3). The HPG-

Dox-30D70H solution resulted in a 15.3°C increase compared to distilled water, which 

increased by almost 1°C. During NIR laser irradiation, particle size was not affected by 

changes in temperature.

In addition to local heating, the nanocarriers were designed to swell upon changes in pH, 

triggering the release of Dox. Volumetric swelling was measured as a function of the molar 

ratio of dT-DMAEMA to HEMA and the pH of the swelling medium (Figure 2e and 2f, 

respectively). The volume swelling ratio is defined as the nanoparticle diameter after 

swelling divided by the original diameter.[20] Figure 2e depicts the swelling ratio for molar 

ratios of 10/90, 20/80, and 30/70 dT-DMAEMA/HEMA (mol/mol) as a function of time. 

The swelling ratio of dT-DMAEMA/HEMA nanoparticles increased with the dT-DMAEMA 

content due to the greater number of protonated amine groups. After 4 h at pH 5.5, the 

swelling ratio of HPG-Dox-10D90H and HPG-Dox-30D70H increased from 1.29 ± 0.04 and 

1.56 ± 0.09, respectively. To investigate the pH sensitivity of nanoparticles, the swelling 

ratio of HPG-Dox-30D70H was measured as a function of pH (Figure 2f). The swelling ratio 

increased from 1.13 ± 0.07 at pH 7.4 to 1.61 ± 0.14 at pH 5.5. The nanoparticle formulation 

may be tuned to control pH-induced swelling.

Dox was encapsulated during particle synthesis. The encapsulation efficiencies of Dox in 

HP-Dox-30D70H (without gold) and HPG-Dox-30D70H nanoparticles were 95.2 ± 3.1% 

and 72.3 ± 6.7%. The reduction in Dox loading was a result of multiple washing steps after 

Au synthesis and antibody conjugation. Dox encapsulation is high within liposome 

formulation (greater than 90%)[21]; polymeric nanoparticles have failed to show similar 

results.[22]

To confirm that pH-induced swelling triggered Dox, the release of Dox was measured as a 

function of time at pH 5.5 and 7.4 (Figure 2g). Dox release was significantly enhanced under 

acidic conditions. After 8 h, 44.05 ± 5.79% of encapsulated Dox was released at pH 5.5 

compared to 15.01 ± 3.80% at pH 7.4. In comparison, other pH-sensitive nanocarriers 

reported 25% Dox release after 24 h at pH 5.5[23] or exhibited a significant burst release 

(50% of loaded Dox).[13b] Our pH-sensitive nanocarriers exhibited a slow, controlled release 

of Dox at pH 7.4 and then a rapid release upon a decrease in pH.

We also investigated the ability of HPG-Dox-30D70H nanoparticles to release Dox by NIR 

laser irradiation. HPG-Dox-30D70H nanoparticles were allowed to release Dox in pH 5.5 

buffer for 6 h and then heated (810 nm, 5 W/cm2, 6 h). As depicted in Figure 2g, Dox 

release was enhanced at pH 5.5 after laser irradiation compared to the nonirradiated control. 

The temperature of the well increased from 37.7 to 48.9°C after 5 min NIR irradiation which 

significantly increased Dox release (Figure S3, supporting information). Approximately 

30% of the initial dose was delivered via a pH change; subsequent irradiation delivered an 
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additional 50% of the entrapped drug. At pH 7.4, only 10% of the initial dose was available 

after 6 h, which increased to 30% of the entrapped drug after laser irradiation. Coupling pH-

triggered release and localized heating into one carrier yielded enhanced Dox delivery. This 

synergistic delivery approach provided tunable release of Dox within the tumor 

microenvironment.

The HPG-Dox-30D70H nanoparticles were conjugated with Herceptin® for targeting 

HER2+ breast cancer cells. The number of Herceptin® molecules on the nanoparticle 

surface was determined by a DC protein assay (Table S2, supporting information).

Approximately, 116 and 117 Herceptin® molecules were conjugated on HPG-30D70H and 

HPG-Dox-30D70H nanoparticles, respectively. The binding affinity of HPG-Dox-30D70H 

to a breast cancer cell line with low HER2 expression, MCF-7, and a HER2 overexpressing 

breast cancer cell line, SK-BR-3, were measured using flow cytometry (Figure 3). As a 

control, immunoglobulin G-PEG labeled, gold embedded, Dox encapsulating, pH-

responsive (30 dT-DMAEMA/70 HEMA, mol/mol) (IPG-Dox-30D70H) nanoparticles were 

prepared. As expected, HPG-Dox-30D70H nanoparticles exhibited a 5.4-fold enhancement 

in binding SK-BR-3 cells relative to MCF-7 cells. These results confirmed previous reports 

claiming that Herceptin® may be used to distinguish between cell lines with low and high 

HER2 expression.[24] Our HPG-Dox-30D70H nanocarriers exhibited similar results 

compared to prior reports of HER2 targeting.[22]

To investigate the therapeutic efficacy of HPG-Dox-30D70H, SK-BR-3 and MCF-7 cells 

were treated with HPG-Dox-30D70H with and without laser irradiation (at 0.26 μM Dox 

equivalent). This dose was 10-fold lower than the half maximal inhibitory concentration 

(IC50) for free Dox (Figure S4, supporting information). Nontargeting IPG-Dox-30D70H 

was used as a control. Cell viability was measured quantitatively using a fluorescent plate 

reader and qualitatively via microscopy. SK-BR-3 cells treated with HPG-30D70H (without 

Dox) and HPG-Dox-30D70H without laser irradiation at pH 7.4 exhibited 77.31 ± 4.13% 

and 51.81 ± 5.39% cell viability, respectively. After NIR laser irradiation, SK-BR-3 cell 

viability significantly decreased to 31.23 ± 7.68% and 14.49 ± 3.60% for HPG-30D70H and 

HPG-Dox-30D70H, respectively. HPG-Dox-30D70H (Figure 4a–b) showed an enhanced 

tumoricidal effect compared to the antibody labeled nanoparticle without Dox, 

HPG-30D70H (Figure 4c–d). When laser irradiation was added, the tumoricidal effect was 

enhanced by both increased temperature and Dox release. SK-BR-3 cells, treated with 

nanoparticles that coupled receptor targeting, chemotherapy, and thermal ablation, resulted 

in a maximal 14% cell survival. Given the low DOX concentration and mild irradiation 

conditions, this level of toxicity is significantly more efficacious than use of systemic Dox or 

combinations of Herceptin®/Dox, Herceptin®/NIR, or Dox/NIR.

Conversely, MCF-7 cells did not show a significant difference between HPG-30D70H and 

HPG-Dox-30D70H in the absence of NIR laser irradiation. After NIR laser exposure, the 

cell viability of MCF-7 cells treated with HPG-30D70H (Figure 4e–f) and HPG-

Dox-30D70H (Figure 4g–h) were not significantly different. This is attributed to the lack of 

targeting, low dose, and reduced Dox release.
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IPG-30D70H and IPG-Dox-30D70H were used as controls for cell toxicity experiments. As 

shown in graphs Figure 4i–j and fluorescent images in Figure S5 (supporting information), 

the tumoricidal effect was hindered due to non-specific targeting. The nanocarriers without 

Dox were not cytotoxic (approximately 91–93% cell viability for both cell lines with and 

without Au-synthesis). The viability results were similar to poly(lactic-co-glyoclide) 

(PLGA) nanoparticles (nearly 93% for both cell lines), which are widely-used for systemic 

drug delivery (Figure S6, supporting information).

Other “multifunctional” vehicles have incorporated two modalities, either Dox/NIR,[25] 

Dox/targeting,[26] or targeting/NIR.[22] These papers reported significantly better results 

than the uni-dimensional control: either Dox, NIR, or targeting moiety alone. Ideally, Dox 

delivery would be localized, to avoid off-target effects, and released quickly. Dox 

encapsulating PLGA nanoparticles exhibit slow release.[27] Stimuli-triggered delivery could 

be beneficial. However, previous reports of pH-sensitivity exhibited either slow release or an 

uncontrolled burst release.[28] The vehicles presented here are different; they have a high 

encapsulation efficiency and can trigger Dox release within hours given a small pH change.

Functionalization of particles with an antibody or peptide is a conventional approach for 

targeting. Nanocarriers that couple both a targeting moiety and either Au nanoparticles[22] or 

Dox[26] on the surface, show a significant decline in targeting ability. We chose Herceptin® 

because it was currently used in the clinic. Herceptin® functionalized nanoparticles 

(HPG-30D/70H), without Dox or laser irradiation, resulted in 77% cell viability. Herceptin® 

alone did not result in a significant tumoricidal effect. Targeting with the addition of 

encapsulated Dox has shown to be useful; however, we have shown that some cancer cell 

types are resistant to this type of therapy and require alternate methods to be employed.[29]

Laser irradiation is a powerful technique that can achieve penetration depths of up to 50 

mm.[30] HPG-30D/70H nanoparticles exhibited 30% cell viability after laser irradiation. 

Cancer cells were reported to be most vulnerable to hyperthermia and chemotherapeutics 

above 43°C.[14] Here, we used mild irradiation conditions (810 nm, 10 min, 5 W/cm2) to 

achieve a 15°C temperature increase whereas other reports required increased laser power to 

achieve similar results (10 min, 15 W/cm2;[22] 3 min, 32 W/cm2;[31] 7 min, 80 W/cm2).[32]

Our multi-targeted nanoparticles have gold nanoparticles embedded homogeneously 

throughout the matrix. Many drug delivery vehicles that induce local heating via NIR 

irradiation use gold surface coatings.[22] Instead, our method employed polymers as a 

template for Au colloids. We have demonstrated that the NIR thermal effect on Au 

nanoparticles is similar to Au coatings (Fig. 2d). Additionally, our templating method is 

suitable for manufacturing and scale-up.

The fusion of three targeting modalities exhibited a significant benefit relative to each 

method alone. The multi-targeted drug delivery platform resulted in 14% cell viability 

whereas the equivalent dosage of free Dox resulted in 81% cell viability. Addition of 

Herceptin® coupled with pH-triggered Dox or NIR ablation increased toxicity over free Dox 

but did not attain the levels of combining all three methods.
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In conclusion, we have synthesized a unique multi-targeted vehicle that couples three 

modalities: targeting, triggered release and thermal ablation. HPG-Dox-30D70H vehicles 

had a high loading efficiency and exhibited pH-responsive Dox release, which was enhanced 

by laser irradiation. Enhanced targeting relative to IgG labeled nanocarriers was achieved by 

conjugating Herceptin®-PEG conjugates to the surface. Critical to translation, these particles 

are relatively simple to prepare with high reproducibility. Our acquired toxicity suggested 

that multi-targeted delivery has great potential as a cancer therapy. HPG-Dox-30D70H is the 

first carrier to integrate targeting, stimuli-responsive drug delivery, and thermal ablation for 

use in breast cancer research.
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Figure 1. 
Schematic diagrams of a) Herceptin®-conjugated, Dox encapsulating, and pH-sensitive dT-

DMAEMA/HEMA (HPG-Dox-30D70H) nanoparticle synthesis and b) cancer therapy.
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Figure 2. 
Characterization of multi-targeted nanoparticles. a) TEM image of HPG-Dox-30D70H 

nanoparticles. Au nanoparticles were homogeneously distributed in nanoparticles. The 

images of nanoparticle pellets after centrifugation of (i) Dox-30D70H (white) and (ii) HPG-

Dox-30D70H (dark brown). Scale bar = 50 nm. b) TGA curves of HPG-Dox-10D90H (light 

blue) and HPG-Dox-30D70H (dark blue). c) UV-vis spectrum of HPG-Dox-30D70H 

nanoparticles exhibited a peak at 795 nm. d) Temperature change of HPG-Dox-30D70H in 

distilled water (5 mg/mL) and nanoparticle-free distilled water after NIR laser irradiation for 

10 min. Images were taken using a NIR thermal camera for (i) HPG-Dox-30D70H in 

distilled water and (ii) only distilled water at 10 min NIR laser irradiation. e) Volume 

swelling ratios of HPG-Dox-10D90H (light blue), HPG-Dox-20D80H (blue), and HPG-

Dox-30D70H (dark blue) in pH 5.5 20mM phosphate buffer at 0, 2, 4, 6, and 8 h. f) Volume 

swelling ratios of HPG-Dox-30D70H in pH 5.5 (light blue), 6.5 (blue), and 7.4 (dark blue) 

20 mM phosphate buffers at 0, 2, 4, 6, and 8 h. g) Cumulative Dox release from HPG-

Dox-30D70H (5 mg/mL) in pH 5.5 (square, dark blue curve) and 7.4 (diamond, light blue 

curve) 20 mM phosphate buffers over 12 h. To evaluate the photothermal effect induced by 

NIR irradiation, HPG-Dox-30D70H was incubated at pH 5.5 (circle) and 7.4 (triangle) in 20 

mM phosphate buffer and then irradiated under a NIR laser for 6 h. The error is the standard 

deviation from the mean, where n = 3. * is P < 0.05.
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Figure 3. 
Flow cytometry analysis of a) SK-BR-3 and b) MCF-7 cells treated with HPG-Dox-30D70H 

or IPG-Dox-30D70H. Blue, green, and red curves represent non-treated, IPG-Dox-30D70H 

treated, and HPG-Dox-30D70H treated samples, respectively. c) Normalized fluorescent 

intensities using flow cytometry. The error is the standard deviation from the mean, where n 
= 3. ** is P < 0.001.
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Figure 4. 
Fluorescent microscopy images of SK-BR-3 (a–d) and MCF-7 (e–h) cells treated with 

HPG-30D70H and HPG-Dox-30D70H with or without NIR laser illumination. Multi-

targeted nanocarriers were conjugated with Herceptin® (a–h) or IgG (Figure S3c–l, 

supporting information). Yellow and red arrows indicate the NIR laser treated and non-

treated areas, respectively. Cell viabilities of SK-BR-3 (i) and MCF-7 (j) cells were 

determined by a resazurin-based toxicology assay. Cells were treated with nanocarriers 

conjugated with either Herceptin® or IgG. The error is the standard deviation from the mean, 

where n = 3. * is p < 0.05 and ** is P < 0.01.
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